翻訳と辞書
Words near each other
・ Burgerbibliothek of Berne
・ Burgerboss
・ Burgerbrug
・ Burgerkill
・ Burgerkill discography
・ Burgerlijk Wetboek
・ Burgerregt
・ Burgers
・ Burgers (album)
・ Burgers and Fries
・ Burgers Bar
・ Burgers material
・ Burgers Park
・ Burgers Pass
・ Burgers vector
Burgers vortex
・ Burgers' equation
・ Burgers' Smokehouse
・ Burgersdorp
・ Burgersdorp Provincial Hospital
・ Burgersdorp, Limpopo
・ Burgersfort
・ BurgerTime
・ Burgerveen
・ Burgerville
・ Burgervlotbrug
・ Burgery ambush
・ Burges
・ Burges and James Gadsden Provincial Park
・ Burges High School (El Paso, Texas)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Burgers vortex : ウィキペディア英語版
Burgers vortex
In fluid dynamics, the Burgers vortex is an exact solution to the Navier–Stokes equations governing viscous flow. The Burgers vortex describes a stationary, self-similar flow.
An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis. On the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the two effects balance.
The Burgers vortex, apart from serving as an illustration of the vortex stretching mechanism, may describe such flows as tornados, where the vorticity is provided by continuous convection-driven vortex stretching.
== Flow field ==
The flow for the Burgers vortex is described in cylindrical (r,z,\phi) coordinates. Assuming axial symmetry (no \phi-dependence), the vorticity equation is solved by the flow field:
:v_r=-\frac12 \alpha r,
:v_z=\alpha z,
:v_\phi=v_\phi(r),
where \alpha>0 is a constant. The flow satisfies the continuity equation by the two first of the above equations. The vorticity equation only gives a non-trivial component in the z-direction, where it becomes
:\frac=\zeta\frac+\nu\nabla^2\zeta,
where D/Dt denotes the convective derivative and \nu the viscosity. Note that the first term on the right-hand side is the vortex stretching term which tends to ''amplify'' the vorticity, while the second term, due to viscosity, attenuates (or rather spreads) vorticity. The solution can be found as
:\zeta=\zeta_0 \exp(-\frac),
where \zeta_0 is a constant. The vorticity is thus distributed as a Gaussian of width
:R=2\sqrt}.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Burgers vortex」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.